TCP-BASED VIDEO STREAMING USING RECEIVER-DRIVEN BANDWIDTH SHARING

Puneet Mehra and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720
{pmehra, avz} @eecs.berkeley.edu

ABSTRACT

In this work we focus on the common case of streaming
video to receivers whose last mile connections to the In-
ternet are bandwith-limited and act as network bottlenecks.
Users generally run multiple concurrent networking appli-
cations that compete for the scarce bandwidth resource. Stan
dard TCP shares bottleneck link capacity according to con-
nection round-trip time (RTT), and therefore may not pro-
vide streaming applications with the necessary bit-rate. In
our prior work, we outlined a receiver-based bandwidth shar-
ing system (BWSS) for allocating the capacity of last mile
bottlenecks among TCP flows according to a user’s pref-
erences. This system does not require modifications to the
TCP protocol, network infrastructure or sending hosts, mak-
ing it easy to deploy. By breaking TCP fairness between
flows on the access link, the BWSS can limit the through-
put fluctuations of high-priority applications. In the present
paper we utilize the BWSS to perform video streaming over
TCP. We establish the benefits of our proposed approach
over standard TCP through Internet experiments involving a
prototype for the Linux operating system. Furthermore, we
demonstrate scenarios in which a client using our bandwidth
control system may actually obtain better performance than
TCP-friendly UDP streaming protocols.

1. INTRODUCTION

The recent proliferation of broadband Internet access has
fueled the increasing popularity of video streaming applica-
tions. From news clips on sites such as CNN.com, to video
on demand from MovieFlix [1], the current Internet offers a
much richer multimedia experience than in the past. While
the majority of traffic on the Internet today is comprised of
TCP [2] flows, conventional wisdom holds that TCP is un-
suitable for “real-time” traffic due to its lack of throughput
guarantees and insistence on reliability. The only alterna-
tive protocol to TCP is UDP, which does not retransmit lost
data packets, or provide the congestion control [3] features

This work was supported by NSF grant ANI-9905799 and AFOSR
contract F49620-00-1-0327

offered in TCP. It is widely accepted in the networking com-
munity that congestion control is essential to the continued
growth and stability of the Internet [4]. Consequently, much
work has gone into the creation of streaming protocols built
on top of UDP, which perform some form of congestion
control and ensure fairness with the ubiquitous, competing
TCP traffic [5]. A wide body of literature, including [6] and
[7], attest to the technical challenges involved in creating
such TCP-friendly rate control protocols. Furthermore, in
many situations streaming over TCP is unavoidable, such as
when client machines are located behind network firewalls
permitting only inbound HTTP traffic.

Our work focuses on the common practice of stream-
ing video to receivers whose last mile connections to the
Internet are bandwidth limited. Additionally, most users
run multiple concurrent networking applications that com-
pete for the scarce bandwidth resource. In many cases, the
limited bandwidth and operation of multiple networking ap-
plications cause the user’s access link to act as a network
bottleneck. Standard TCP shares the capacity of a bottle-
neck link among different flows according to their round-
trip time (RTT), and therefore may not provide streaming
applications with the necessary bit-rate they need to func-
tion properly. Hence we seek to address the shortcomings
of TCP for adequate streaming to users running multiple
TCP applications behind bandwidth-limited access links.

In prior work [8], we outline a receiver-driven band-
width sharing system (BWSS), which allows a TCP receiver
to control the manner in which the bandwidth of the user’s
access link is allocated to different applications, by adjust-
ing the flow-control window advertised to the sender. This
allocation is done based on pre-specified user preferences.
In essence, the BWSS allows a user to break fairness among
her own flows, and to partition bandwidth in an application-
specific manner. The BWSS can be used to eliminate through-
put fluctuations in TCP, which are detrimental for stream-
ing applications. Furthermore, this system requires modest
changes to a TCP receiver and does not require any modifi-
cations to the network infrastructure or to TCP senders, fa-
cilitating easy deployment. It is our claim that by using the
BWSS to control the throughput of a streaming application

using TCP, we can achieve efficient video streaming without
resorting to UDP. This can be quite beneficial for the situa-
tions in which streaming applications are forced to use TCP
to accomodate user firewalls. Furthermore, we contend that
if there is congestion which is restricted to the user’s ac-
cess link, then by breaking the fairness among a user’s TCP
connections, it is possible to provide higher throughput for
streaming applications than by using UDP streaming with
a TCP-friendly protocol. This, in turn, leads to an overall
“better” multimedia streaming experience for the user.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss relevant prior work. In Section 3 we offer
an overview of our receiver-based BWSS. In Section 4 we
present results from different streaming experiments on the
Internet. Finally we provide directions for future work and
conclude this paper in Section 5.

2. RELATED WORK

There have been several recent proposals which challenge
the long-held belief that TCP is unsuitable for streaming
applications. The authors of [9] provide a qualitative ar-
gument for the possibility of multimedia streaming using
TCP. They note that client-side buffering can handle both
the retransmission delays, and congestion control induced
throughput variations, of TCP. Another technique proposed
for streaming is Receiver-based Delay Control (RDC) [10],
in which receivers delay TCP ACK packets based on router
feedback. The authors of [10] attempt to mimic a con-
stant bit rate (CBR) connection using RDC and also pro-
pose a layered streaming method. Our approach leverages
our previously proposed BWSS described in [8] to provide
a nearly CBR connection for the video stream, without any
changes to routers or sending hosts. Time-lined TCP [11]
is a proposal to support streaming over TCP by assigning
deadlines to data passed to the TCP/IP stack in the operat-
ing system, and skipping any data which is past its dead-
line. Similarly, TCP-RTM [12] involves modifications to
both the TCP sender and receiver which allow “stepping
over” missed packets, thus avoiding the negative impact of
TCP retransmissions. Our approach requires no modifica-
tions to the TCP protocol, or to senders. Futhermore, our
method may be combined with approaches such as Time-
lined TCP or TCP-RTM to provide guaranteed throughput
for a TCP connection, in addition to the real-time perfor-
mance enhancements of these protocols.

3. SYSTEM DESCRIPTION

We now provide an overview of our receiver-controlled BWSS
for TCP applications, originally proposed in [8]. The goal
of the BWSS is to allow a user to prioritize among applica-
tions by partitioning the limited access link bandwidth ac-

cording to her preferences. The essential idea behind the
system is to constrain the throughput of certain low-priority
applications in order to provide additional bandwidth, if pos-
sible, for higher-priority flows as specified by the user’s
profile while achieving full bandwidth utilization of the ac-
cess link. Since our primary focus in this work is not the
BWSS itself, but instead the utilization of the BWSS for
efficient video streaming, our description of the system will
be intentionally brief. We first discuss the bandwidth alloca-
tion model supported by the BWSS. We then briefly discuss
the various components of our receiver-based solution. We
conclude this section with a discussion of implementation
issues related to our system prototype, used in conducting
experiments, and highlight changes made to the system as
described in [8].

3.1. Bandwidth Allocation Model

The bandwidth allocation model used by the BWSS rec-
ognizes two categories of applications: those that require
a minimum throughput guarantee, and those which do not
have any such requirements. For example, streaming appli-
cations are only viable above the streaming rate, and for a
given pre-coded content at a fixed bit-rate, the perceptual
quality does not significantly improve with throughput in-
creases. Meanwhile, a file transfer application does not have
any strict minimal bandwidth requirement, but may benefit
from additional bandwidth. In order to capture the essence
of such application preferences, we assign a priority, a min-
imal rate, and a weight to each TCP connection destined to
the receiver. The bandwidth is allocated to applications ac-
cording to the following algorithm. First, the minimal rate
is provided to every connection, in decreasing order of ap-
plication priority. Then, the remaining bandwidth is shared
proportionally to the weight of the connection. This formu-
lation captures the possibility that a receiver might prefer to
starve low priority connections in order to improve higher
priority ones. This is certainly desirable when sharing the
bandwidth among all the connections makes it impossible
to run any application well. It also captures the idea of
weighted fair sharing of bandwidth between viable appli-
cations.

3.2. System Components

We now briefly describe the different components of the
BWSS, shown in the block diagram in Figure 1. More de-
tails of the BWSS are included in [8]. The main building
block of the BWSS is the TCP Flow Control System (FCS),
which can constrain the rate of a given TCP connection to
a particular bit-rate achievable given the flow’s congestion
window. As shown in Figure 2, the FCS is an iterative three
stage process which consists of measuring the actual bit-rate
of a flow, calculating the difference between the measured

User
Preferences

Receiver

) n | Fcs -
TRAS “ 1
Target Flow Control R
Rate System
Allocation
Sub- Internet
System
N FCS,,
T, | Flow Control
System R,
o
Sender
Calculation
Sub-System Ry
BWSS For the receiver:
Bandwidth Sharing System O = system target bit-rate

For the N ™ connection:
W, = Advertised Window
T, = Target Rate

R, = Measured Rate

Fig. 1. Receiver-based system for bandwidth sharing.

Receiver Window

FCS

Measure
Bit-rate and RTT

Adapt

Calculate
Target Rate —
- Measured Rate

W, = Advertised Window
T, = Target Rate
R, = Measured Rate

Fig. 2. TCP Flow Control System (FCS).

and target bit-rates, and then adapting the receiver’s adver-
tised window to achieve the desired target rate. A key com-
ponent of the BWSS is the parameter ¢, which is the system
target bit-rate. This value represents the sum of target bit-
rates allocated to different flows. As shown in Figure 1,
given o and external user-preferences, the Target Rate Al-
location Sub-system determines the target bit-rates for each
FCS in the BWSS. Since o is responsible for the FCS target
bit-rates, it is indirectly responsible for the actual through-
put of these flows, and consequently it determines the over-
all link utilization. Hence the o Calculation Sub-system is
responsible for determining the optimal value of o which
achieves full link utilization. It converges to this value by
increasing or decreasing the value of o and considering the
actual measured throughput of the different connections.

3.3. Prototype Implementation

We utilize a prototype of the BWSS for the Linux operat-
ing system to conduct various experiments involving video
streaming. The BWSS is implemented as a shared library
which overrides the connect() and read() functions of the C
standard library, glibc, to provide the desired functionality
of the BWSS. Additional details about the implementation
of the BWSS are available in [8]. We will now highlight
some changes made to the BWSS as described in our prior
work.

In [8], the o Calculation Sub-system made incremen-
tal changes to ¢ and then measured the impact of these
changes on actual flow throughput before considering ad-
ditional changes. The process of increasing or decreasing
o and then measuring the impact of these changes gener-
ally resulted in a fairly long convergence time, as shown
in the NS-2 simulation results in [8]. Our simulations had
indicated that the system needed to constantly “probe” the
network for any possible increases in bandwidth, much like
TCP, in order to ensure full utilization of the access link.

Subsequent operational experience with the BWSS over
the actual Internet has led us to a much simpler formulation
of the o Calculation Sub-system, which is able to adapt to
changes in flow throughput more rapidly. Specifically, the
current o Calculation Sub-System is simply reactive: it uses
repeated measurements of the aggregate flow throughput to
determine the value of o. When the system is started, the
initial aggregate TCP throughput is used as the initial value
of o. There are two different forms of congestion that the
system must respond to: congestion which only affects a
particular flow, and congestion which affects the entire ac-
cess link. Furthermore, the system must be able to distin-
guish these two cases, and respond appropriately when con-
gestion subsides. We will now examine the BWSS response
to these two cases in more detail.

If there is congestion which affects a particular flow, the
BWSS detects throughput reduction for this flow as com-

pared to its target rate, and responds by allocating addi-
tional unused bandwidth from this flow to other connec-
tions. Specifically, if the measured throughput for a flow
is below a fraction, «, of its target bit-rate, 7', then o is in-
creased by (1 —ca)-T. The BWSS keeps track of a flow that
experiences congestion, and when its measured throughput
exceeds « - T, signalling the end of congestion, o is set
to the new measured aggregate throughput. To distinguish
congestion which affects a particular connection from that
which affects the entire access link, the BWSS uses a sim-
ple heuristic. If the throughput of at least half of the connec-
tions have been reduced below «.- T, where T' represents the
target rate of a given flow, then the BWSS concludes that
the congestion affects the entire access link, and responds
by reducing o to the measured aggregate throughput. Af-
ter congestion subsides, the BWSS is able to measure an
increase in the aggregate throughput. This increase in the
aggregate throughput hints at the end of the congestion, and
the BWSS responds by setting o to the new measured aggre-
gate throughput. As shown in Section 4, this new reactive
nature of the ¢ Calculation Sub-system allows faster con-
vergence to the rate than the previous approach in [8].

3.4. Benefits And Limitations

The BWSS can provide benefits in several scenarios for
video streaming to bandwidth-limited receivers running mul-
tiple TCP applications. The BWSS effectively deals with
the case when the overall access link bandwidth is reduced
during the streaming session, and ensures that the stream-
ing application receives its minimum required bit-rate. This
bandwidth reduction may have resulted from a user start-
ing additional TCP connections during the streaming ses-
sion. The BWSS state is reset whenever a flow is started
or stopped, and hence the bandwidth allocated to the new
flow is limited to prevent an adverse effect on the stream-
ing connection. The BWSS is also effective even if the
flows causing congestion on the access link are not under
the direct control of the BWSS. For example, a user may
start a UDP session on the host running the BWSS, or may
initiate traffic to another host on a LAN connected to the
Internet through the shared access link. When such conges-
tion occurs, the BWSS responds by re-allocating the link
bandwidth to ensure that the streaming application still has
its minimum required bit-rate. There are two instances in
which the BWSS fails to provide any benefits for video
streaming. The BWSS is not useful if there is congestion
on the path to the video source which limits the throughput
of the streaming. Furthermore, the BWSS does not provide
any benefits if there is congestion on the access link which
reduces the available capacity below the required streaming
rate. These cases require a reduction in the streaming rate
and are an application-specific detail.

4. INTERNET EXPERIMENTS

To demonstrate the efficacy of video streaming over TCP
using the BWSS, we have performed experiments using the
Internet as our network testbed. We first discuss the exper-
imental setup in more detail. We then discuss an experiment
which demonstrates the benefits of streaming using the BWSS
over standard TCP. Finally, we describe an experiment which
offers an example of a situation in which the BWSS of-
fers better performance than TCP and a congestion-adaptive
UDP protocol, using a popular video streaming application
for our tests. Specifically, we compare the streaming perfor-
mance of video encoded in SureStream RealVideo format
streamed using TCP, TCP with the BWSS, and UDP.

Cross-Traffic
Source

VIDEO SOURCE

Bottleneck
Access
Link

Fig. 3. Experimental Setup. FTP/Video and interfering
cross traffic sent to Vonnegut running BWSS.

4.1. Experimental Setup

The network configuration used in our Internet experiments
is shown in Figure 3. In the experiments, the host Vonnegut,
a machine located in the eecs.berkeley.edu domain, is the re-
cipient of Internet traffic. Since Vonnegut is actually con-
nected to the Internet through a fast connection, we utilize
the NIST Net [13] network emulation package to emulate
a slower Broadband connection, which serves as our access
link bottleneck. NIST Net employs a Linux kernel mod-
ule to buffer incoming packets to limit the bandwidth of the
connection, and to introduce delays which reflect a slower
Internet connection. We use NIST Net to limit our overall
incoming throughput to 960 Kbps and to introduce an ad-
ditional delay of 30ms, which models the performance of

a 1Mb/s Broadband Internet connection, such as that pro-
vided by DSL and Cable-Modem Internet Service Providers
(ISPs).

All experiments involve a particular video source, lo-
cated in the eecs.berkeley.edu domain, and two external FTP
sources sending data to Vonnegut, which is running the
BWSS. At some point during each experiment, cross-traffic
is sent from a different source in the eecs.berkeley.edu do-
main to Vonnegut, creating congestion on the access-link.
The interfering cross traffic is a constant bit-rate (CBR) UDP
data stream generated using the Real-Time UDP Data Emit-
ter (RUDE) [14]. We use the throughput seen by the differ-
ent applications, as well as the aggregate throughput of the
receiving host as our performance criteria. The through-
put received by the different applications is measured by
a throughput measurement library which records the times-
tamps and sizes of packets read by the different applications.
We perform 3 trials of each given experiment, and graph the
average of these runs in all of our figures. We have also
performed experiments involving streaming from a video
source in the eecs.berkeley.edu domain to a host connected
to the Internet via an AT&T Broadband cablemodem con-
nection, with similar throughput results.

It is important to note that the BWSS is unable to control
the interfering cross-traffic in any manner. The motivation
for performing this sort of experiment is that it simulates
the scenario when a single access-link to the Internet may
be shared among multiple PCs connected via a LAN. In this
case, it is possible for a user of one machine to generate
traffic which causes congestion on the access-link and inter-
feres with traffic destined to another machine on the LAN. It
also models the case when a new UDP connection is started
on the host running the BWSS.

4.2. Comparison of standard TCP and TCP with BWSS

The first experiment is intended to demonstrate the inad-
equacy of streaming over standard TCP, and the benefits
for streaming applications offered by the BWSS. In this
experiment, we send video packets from our video source
at a rate of 496Kbps in the form of 62, one-thousand byte
packets per second. This is nearly equivalent to stream-
ing video at 500Kbps, which is now a common stream-
ing rate used by both Windows Media Player [15] and Re-
alOne Player [16]. There are 2 concurrent FTP sessions
to ftp10.freebsd.org and ftp12.freebsd.org which occur at
the same time as the video streaming. Furthermore, 30
seconds into the experiment, a 320 Kbps interfering UDP
cross-traffic stream is introduced and lasts for 30 seconds.
For this experiment, the following parameters are used for
our BWSS: each FTP connection is assigned no minimal
rate, and a weight of 1, while the video stream is assigned
a minimum rate of 496Kbps and a weight of 0 and a higher
priority than the FTP connections. This corresponds to the

desire for the video to stream at 496Kbps and to split any
remaining access-link bandwidth among the FTP flows.

As shown in Figure 4, while standard TCP is able to
maintain the streaming rate initially, it is unable to sustain
the needed rate when congestion occurs on the access-link.
This would result in poorer video quality at the receiver due
to frame drops, or a pause in the video to allow additional
“re-buffering” of the video stream. Meanwhile, Figure 5
demonstrates that the BWSS is able to maintain the desired
streaming rate by appropriately reducing the rate for the
FTP connections when congestion takes place. To quan-
tify the benefits of streaming using the BWSS over standard
TCP, in Figure 6 we plot the fraction of packets arriving late
at the receiver as a function of the number of seconds of pre-
buffering. Using the BWSS reduces the amount of required
pre-buffering by a factor of 4. We note that this factor would
be even larger if the congestion period had lasted longer.

1e+06 f; : : -
800000
600000 |

400000

throughput (Bits/sec)

time (seconds)

ftp10.freebsd.org - video siream ———
ftp12.freebsd.org -~ total e

Fig. 4. Bandwidth partition for TCP for experiment 1.

1e+06 grr—— —
800000
600000 }

400000

throughput (Bits/sec)

200000

0 1 1 1 1 1
0 20 40 60 80 100 120

time (seconds)

ftp10.freebsd.org - video stream ——
ftpl2.freebsd.org -~ e o [—

Fig. 5. Bandwidth partition for BWSS for experiment 1.

Fraction of Packets Arriving Late

0 1 2 3 4 5 6 7 8 9
Amount of PreBuffering (seconds)

[Standard TCP —— BWSS s ‘

Fig. 6. Fraction of packets arriving late in experiment 1.

4.3. RealVideo Streaming Experiments

We now demonstrate that streaming with TCP and the BWSS
can offer better performance than a congestion-adaptive UDP
protocol. We conduct an experiment in which we stream a
trailer for the movie “The Lion King” encoded using Re-
alNetworks’s SureStream * technology. SureStream tech-
nology, supported by RealNetworks’s Helix Producer [17],
supports encoding of the video stream at multiple bit-rates,
and dynamically switches between the different encoded
streams based on the available bandwidth. The trailer is en-
coded to support several different bit-rates: 450Kbps, 350Kbps,
262 Kbps, and 60Kbps. We choose to use SureStream tech-
nology since it is representative of the standard industry ap-
proach being taken by streaming media applications to ad-
dress the congestion control deficiencies of UDP. Note that
TCP-friendly streaming protocols must react to congestion
by reducing the sending rate regardless of whether the con-
gestion takes place in the network or at the user’s access-
link. The BWSS, on the other hand, is aware of the other
TCP connections running on the user’s host, and is able to
break the fairness among these flows, without adversely af-
fecting external flows, in order to obtain additional band-
width for high-priority applications, such as video stream-
ing.
We have installed a basic version of the Helix Universal
Server [18] at the video source used for streaming the trailer.
In addition to the streaming of the trailer, we have also exe-
cuted two concurrent FTP sessions to ftp12.freebsd.org and
ftp13.freebsd.org . Our NIST Net configuration is identical
to that for the experiment in Section 4.2. At time 60 sec-
onds, we introduce a 240Kbps interfering UDP flow which
lasts for 40 seconds. As shown in Figure 7, the TCP Sure-
Stream flow is unable to maintain the necessary through-

1SureStream, Helix Producer, Helix Universal Server and RealOne
Player are trademarks of RealNetworks Inc.

put for streaming at 450Kbps. We observe that with TCP,
the SureStream technology does not try to switch to the
350Kbps encoding when the throughput decreases, result-
ing in a very poor viewing experience.

Meanwhile as Figure 8 shows, with UDP, the SureStream
technology is capable of effectively streaming at 350Kbps
2 but does not switch to the 450Kbps stream until the con-
gestion has subsided at approximately 100 seconds into the
experiment. This is evidenced by the rise in throughput for
the video stream at 110 seconds, and the switch from the
350Kbps stream to the 450Kbps stream is confirmed by the
RealOne client. The throughput of the RealOne client us-
ing TCP and the BWSS is shown in Figure 9. The video
streaming connection is assigned a higher priority than the
FTP applications and has a minimum rate of 520Kbps 2
As shown in Figure 9, the BWSS is able to ensure that the
RealOne client has enough bandwidth to effectively stream
the trailer at 450Kbps, despite the introduction of the in-
terfering cross-traffic. The average streaming rate for this
experiment for TCP, UDP, and TCP with the BWSS are
354Kbps, 442Kbps, and 488Kbps respectively. These re-
sults confirm our initial claims that the BWSS can provide
better streaming performance than standard TCP, and in cer-
tain situations, can actually provide superior performance to
congestion-adaptive UDP protocols.

1e+06
800000
600000 +

400000

throughput (Bits/sec)

200000 |

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140

time (seconds)

ftpl2.freebsd.org

video stream ——
ftp13.freebsd.org -

total -----ee

Fig. 7. Bandwidth partition for TCP SureStream for
experiment 2.

2The Helix Universal Server streams video at a faster rate than its
encoded-rate whenever possible, most likely to fill the receiver’s buffer
to deal with varying network conditions. This phenomenon is shown in
Figure 8 where the server sends the 350Kbps encoded stream at 400Kbps.

SEven though the highest encoded bit rate is 450Kbps, we choose
520Kbps to be the minimum rate in order to accomodate the Helix Uni-
versal Server.

1e+06 FRTIn
,g 800000
|
) 600000 |
5
o
<
[=2]
=]
]
£
O 1 1
0 20 40 60 80 100 120 140
time (seconds)
ftpl2.freebsd.org - video stream ——
ftpl13.freebsd.org - total --e-e----
Fig. 8. Bandwidth partition for UDP SureStream for

experiment 2.

1e+06

800000
600000

400000

throughput (Bits/sec)

200000

0 20 40 60 80 100 120 140
time (seconds)

ftpl2.freebsd.org - video stream ——
ftp13.freebsd.org -~ e o [—

Fig. 9. Bandwidth partition for BWSS SureStream for
experiment 2.

5. CONCLUSIONS AND FUTURE WORK

In this work we have conducted a preliminary investigation
of video streaming over TCP using a receiver-controlled
BWSS. The BWSS allows prioritization of certain connec-
tions by providing them with additional bandwidth and works
without changes to the network infrastructure or sending
hosts. The BWSS achieves this prioritization by breaking
the fairness among a user’s TCP connections in a manner
unavailable to TCP-friendly UDP protocols, which must en-
sure fairness with all competing TCP traffic, regardless of
the destination. Through Internet experiments we have shown
that streaming with the BWSS offers superior performance
to streaming with standard TCP alone. Futhermore, we
have demonstrated situations in which streaming using the
BWSS can offer better performance than even congestion-
adaptive UDP streaming protocols.

A natural question to ask is whether the BWSS can pos-
sibly be extended to incorporate both UDP and TCP flows.
This future direction of research leads to interesting chal-
lenges. The most obvious is that although the BWSS sacri-
fices fairness among a user’s TCP connections, it does not
modify TCP in any manner that leads to unfairness with
competing TCP traffic. Great care must be taken when op-
erating with UDP flows to ensure that they remain TCP-
friendly. One possible approach is to create a virtual pipe
for the UDP traffic by restricting the TCP traffic to some
fraction of the overall bandwidth. Hence it may be possible
to set aside 500Kbps for a particular UDP streaming ap-
plication and to restrict the user’s competing TCP traffic to
the remaining available bandwidth so that it does not inter-
fere with the UDP stream. Additionally, while TCP offers
an application-independent manner of controlling the band-
width of certain flows by restricting the user’s advertised
window, UDP traffic is inherently application specific and
offers no similar control knobs. We intend to explore dif-
ferent techniques to generalize the BWSS to provide a com-
plete end-host solution to allow application-specific band-
width allocation regardless of the underlying network pro-
tocol.

6. REFERENCES

[1] “MovieFlix. http://www.movieflix.com,” .

[2] J.B. Postel, “Transmission Control Protocol,” RFC 793, Information
Sciences Institute, September 1981.

[3] Van Jacobson, “Congestion Avoidance and Control,” in ACM S G-
COMM '88, Stanford, CA, August 1988, pp. 314-329.

[4] Sally Floyd and Kevin Fall, “Promoting the use of end-to-end con-
gestion control in the Internet,” IEEE/ACM Transactions on Net-
working, vol. 7, no. 4, pp. 458-472, 1999.

[5] Wai-tian Tan and Avideh Zakhor, “Real-time internet video using
error resilient scalable compression and TCP-friendly transport pro-
tocol,” |EEE Transactions on Multimedia, vol. 1, no. 2, pp. 172-186,
1999.

[6] Sally Floyd, Mark Handley, Jitendra Padhye and Jorg Widmer,
“Equation-Based Congestoin Control for Unicast Applications,” in
Proceedings of ACM SGCOMM 2000, August 2000.

[7] Reza Rejaie,Mark Handley and Deborah Estrin, “RAP: An end-to-
end rate-based congestion control mechanism for realtime streams in
the internet,” in Proceedings of IEEE INFOCOM 1999, 1999, pp.
1337-1345.

[8] Puneet Mehra, Christophe De Vleeschouwer and Avideh Zakhor,
“Receiver-Driven Bandwidth Sharing for TCP,” in Proceedings of
|EEE INFOCOM 2003, 2003.

[9] Charles Krasic, Kang Li and Jonathan Wapole, “The case for Stream-
ing Multimedia with TCP,” in 8th International Workshop on Inter-
active Distributed Mutlimedia Systems (iDMS), 2001.

[10] Pai-Hsiang Hsiao, H.T. Kung and Koan-Sin Tan, “Video over TCP
with Receiver-based Delay Control,” in Proceedings of ACM NOSS
DAV, 2001.

[11] B. Mukherjee and T. Brecht, “Time-Lined TCP for the TCP-Friendly
Delivery of Streaming Media,” in Proceedings of IEEE ICNP ’'00,
November 2000.

[12] Sam Liang and David Cheriton, “TCP-RTM: Using TCP for Real
Time Applications,” Submitted to IEEE ICNP ’02, 2002.

[13] “Nist net network emulator. http://snad.ncsl.nist.gov/itg/nistnet/,” .
[14] “Real-Time UDP Data Emitter (RUDE) http://cvs.atm.tut.fi/rude/,” .

[15] “Microsoft windows media player.
http://www.microsoft.com/windows/windowsmedia/players.asp,” .

[16] “RealOne Player http://www.real.com/,” .

[17] “Helix Producer User’s Guide
http://service.real.com/help/library/guides/helixproducer/Producer.htm,”

[18] “Helix Universal Server Administration Guide
http://service.real.com/help/library/guides/helixuniversalserver/realsrvr.htm,”

